nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv searchzone qikanlogo popupnotification paper paperNew
2026, 02, v.39 25-33+48
非梗阻性肥厚型心肌病主要心血管不良事件的影响因素及Nomogram预测模型的构建与验证
基金项目(Foundation): 2024年度河北省医学科学研究课题计划项目(20242203)
邮箱(Email): 854157956@qq.com;
DOI:
摘要:

目的 探讨非梗阻性肥厚型心肌病(NHCM)发生主要心血管不良事件(MACE)的影响因素,构建Nomogram预测模型并验证。方法 选取2021年9月至2022年9月收治的NHCM患者200例作为建模集,按照7∶3比例,选取2022年10月至2023年10月收治的NHCM患者86例作为验证集。根据2年内是否发生MACE将建模集患者分为MACE组(n=55)和非MACE组(n=145)。比较MACE组和非MACE组一般资料、超声测量心肌做功参数,采用逻辑回归(Logistic)分析NHCM患者发生MACE的影响因素,应用R软件(4.3.0版本)的rms程序包构建Nomogram预测模型。通过绘制校准曲线评估预测模型的校准度;通过绘制受试者工作特征(ROC)曲线评估预测模型的区分度,并利用验证集数据进行外部验证。结果 MACE组年龄、有不明原因晕厥者占比、有心房颤动者占比、有心力衰竭者占比、有碎裂QRS波(fQRS)者占比、N-末端脑钠肽前体(NT-proBNP)水平均高于非MACE组,左心室射血分数(LVEF)、整体做功指数(GWI)、整体有用功(GCW)、整体做功效率(GWE)均低于非MACE组(P<0.05,P<0.01);年龄、不明原因晕厥、心房颤动、心力衰竭、fQRS、NT-proBNP是NHCM患者发生MACE的危险因素,LVEF、GWI、GCW、GWE是保护因素,且校正年龄、不明原因晕厥、心房颤动、心力衰竭、fQRS、NT-proBNP、LVEF后,GWI、GCW、GWE仍是NHCM患者发生MACE的保护因素(P<0.05,P<0.01);常规影响因素联合GWI、GCW、GWE所建立的新Nomogram预测模型曲线下面积(AUC)为0.940(95%CI:0.902,0.977);校准曲线、ROC曲线显示,新Nomogram预测模型的校准度及预测效能较高。结论 GWI、GCW、GWE经校正常规影响因素后仍是NHCM患者发生MACE的保护因素,其与常规影响因素联合所建立的Nomogram预测模型在验证集中具有良好的预测能力,且准确性较高,可为临床MACE防治决策提供参考依据。

Abstract:

Objective To investigate the influencing factors of major adverse cardiovascular events(MACE) in non-obstructive hypertrophic cardiomyopathy(NHCM) and to construct and validate a nomogram prediction model. Methods A total of 200 NHCM patients admitted from September 2021 to September 2022 were selected as the modeling set. According to the ratio of 7:3, 86 NHCM patients admitted from October 2022 to October 2023 were selected as the validation set. Patients in the modeling set were divided into MACE group(n=55) and non-MACE group(n=145) according to whether MACE occurred within 2 years. The general data and myocardial work parameters measured by echocardiography were compared between MACE group and non-MACE group. Logistic regression was used to analyze the influencing factors of MACE in NHCM patients, and the rms package of R software(version 4.3.0) was used to construct the nomogram prediction model. Calibration curve was drawn to evaluate the calibration of the prediction model; the receiver operating characteristic(ROC) curve was drawn to evaluate the discrimination of the prediction model, and the validation set data was used for external verification. Results The age, proportion of patients with unexplained syncope, atrial fibrillation, heart failure, and fragmented QRS waves(fQRS), and N-terminal pro-brain natriuretic peptide(NT-proBNP) levels in the MACE group were higher than those in the nonMACE group, while the left ventricular ejection fraction(LVEF), global work index(GWI), gross conbustible work(GCW), and global work efficiency(GWE) were lower than those in the non-MACE group(P<0.05, P<0.01). Age, unexplained syncope, atrial fibrillation, heart failure, fQRS, and NT-proBNP were risk factors for MACE in patients with NHCM, while LVEF, GWI, GCW, and GWE were protective factors. After adjusting for age, unexplained syncope, atrial fibrillation, heart failure, fQRS, NT-proBNP, and LVEF, GWI, GCW, and GWE remained protective factors for MACE in patients with NHCM(P<0.05, P<0.01). The area under the curve(AUC) of the new nomogram prediction model established by combining conventional influencing factors with GWI, GCW, and GWE was 0.940(95%CI: 0.902, 0.977). Calibration curve and ROC curve showed that the new nomogram prediction model had high calibration and predictive performance for MACE. Conclusion GWI, GCW and GWE are still protective factors for MACE in NHCM patients after adjusting for conventional influencing factors. The nomogram prediction model established by the combination of GWI, GCW and GWE with conventional influencing factors has good predictive ability and high accuracy in the validation set, which can provide reference for clinical MACE prevention and treatment decisions.

参考文献

[1]HIRASAWA K,IZUMO M,MIZUKOSHI K,et al. Prognostic significance of right ventricular function during exercise in asymptomatic/minimally symptomatic patients with nonobstructive hypertrophic cardiomyopathy[J]. Echocardiography,2021,38(6):916-923. DOI:10.1111/echo.15076.

[2]MASRI A,BARRIALES-VILLA R,ELLIOTT P,et al. Safety and efficacy of aficamten in patients with non-obstructive hypertrophic cardiomyopathy:a 36-week analysis from FOREST-HCM[J]. European J Heart Fail,2024:ejhf. 3372. DOI:10.1002/ejhf.3372.

[3]GÜNER A,CANDANÖ,KAHRAMAN S,et al. Cardiovascular evaluation of pregnant women with hypertrophic cardiomyopathy[J].Herz,2023,48(2):141-151. DOI:10.1007/s00059-022-05294-0.

[4]ZHAO K,ZHU Y,CHEN X,et al. Machine learning in hypertrophic cardiomyopathy[J]. JACC Cardiovasc Imag,2024,17(8):880-893. DOI:10.1016/j.jcmg.2024.03.010.

[5]RHEE T M,KO Y K,KIM H K,et al. Machine learning-based discrimination of cardiovascular outcomes in patients with hypertrophic cardiomyopathy[J]. JACC Asia,2024,4(5):375-386. DOI:10.1016/j.jacAsia.2024.02.003.

[6]SHIMADA Y J,RAITA Y,LIANG L W,et al. Prediction of major adverse cardiovascular events in patients with hypertrophic cardiomyopathy using proteomics profiling[J]. Circ Genom Precis Med,2022,15(6):e003546. DOI:10.1161/CIRCGEN.121.003546.

[7]ZOU Q,QIU T,LIANG C,et al. Multimodal prediction of major adverse cardiovascular events in hypertensive patients with coronary artery disease:integrating pericoronary fat radiomics,CT-FFR,and clinicoradiological features[J]. La Radiol Med,2025,130(6):767-781. DOI:10.1007/s11547-024-01740-5.

[8]ZHUANG H,YANG K,ZHAO S,et al. Incremental value of myocardial global longitudinal strain in predicting major adverse cardiac events among patients with hypertrophic cardiomyopathy[J]. Echocardiography,2024,41(5):e15834. DOI:10.1111/echo.16402.

[9]LIAO H,TAN H C,WANG Z,et al. Combined evaluation ofcoronary artery disease and high-sensitivity cardiac troponin T forprediction of adverse events inpatients with hypertrophic cardiomyopathy[J]. BMC Cardiovasc Disord,2021,21(1):325. DOI:10.1186/s12872-021-01964-1.

[10]ZHOU N,WENG H,ZHAO W,et al. Gene-echocardiography:refining genotype:phenotype correlations in hypertrophic cardiomyopathy[J]. Eur Heart J Cardiovasc Imag,2023,25(1):127-135. DOI:10.1093/ehjci/jeac143.

[11]GALLI E,VITEL E,SCHNELL F,et al. Myocardial constructive work is impaired in hypertrophic cardiomyopathy and predicts left ventricular fibrosis[J]. Echocardiography,2019,36(1):74-82. DOI:10.1111/echo.14416.

[12]GONÇALVES A V,ROSA S A,BRANCO L,et al. Myocardial work is associated with significant left ventricular myocardial fibrosis in patients with hypertrophic cardiomyopathy[J]. Int J Cardiovasc Imag,2021,37(7):2237-2244. DOI:10.1007/s10554-021-02106-0.

[13]Authors/Task Force members,ELLIOTT P M,ANASTASAKIS A,et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy:the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology(ESC)[J]. Eur Heart J,2014,35(39):2733-2779. DOI:10.1093/eurheartj/ehu390.

[14]HUR K Y,MOON M K,PARK J S,et al. 2021 clinical practice guidelines for diabetes mellitus of the Korean diabetes association[J]. Diabetes Metab J,2021,45(4):461-481. DOI:10.4093/dmj.2021.0091.

[15]JONES N R,MCCORMACK T,CONSTANTI M,et al. Diagnosis and management of hypertension in adults:NICE guideline update2019[J]. Br J Gen Pract,2020,70(691):90-91. DOI:10.3399/bjgp20X710114.

[16]MILMAN B,BURNS B D. Atrial fibrillation:an approach to diagnosis and management in the emergency department[J].Emerg Med Pract,2021,23(5):1-28.DOI:10.1097/01.empr.0000732614.72697.69.

[17]NIEMINEN M S,BÖHM M,COWIE M R,et al. Executive summary of the guidelines on the diagnosis and treatment of acute heart failure:the Task Force on Acute Heart Failure of the European Society of Cardiology[J]. Eur Heart J,2005,26(4):384-416. DOI:10.1093/eurheartj/ehi104.

[18]YACOUB M S,EL-NAKHAL T,HASABO E A,et al. A systematic review and meta-analysis of the efficacy and safety of Mavacamten therapy in international cohort of 524 patients with hypertrophic cardiomyopathy[J]. Heart Fail Rev,2024,29(2):479-496. DOI:10.1007/s10741-024-10470-1.

[19]NOURANI M,MIRZAIE M,ALI SADR-AMELI M,et al. Role of surface electrocardiography in differentiation between obstructive and non-obstructive hypertrophic cardiomyopathy[J]. J Tehran Univ Heart Cent,2023:46-51.DOI:10.18502/jthc.v18i2.10573.

[20]赵庆庆.无创心肌做功指数对非梗阻性肥厚型心肌病患者左室心肌做功的研究[D].郑州:郑州大学,2021. DOI:10.27466/d.cnki.gzzdu.2021.004781.

[21]BERMAN A N,BIERY D W,BESSER S A,et al. Lipoprotein(a)and major adverse cardiovascular events in patients with or without baseline atherosclerotic cardiovascular disease[J]. J Am Coll Cardiol,2024,83(9):873-886. DOI:10.1016/j.jacc.2024.01.032.

[22]ZHANG X R,ZHONG W F,LIU R Y,et al. Improved prediction and risk stratification of major adverse cardiovascular events using an explainable machine learning approach combining plasma biomarkers and traditional risk factors[J]. Cardiovasc Diabetol,2025,24(1):153. DOI:10.1186/s12933-025-02313-2.

[23]XIE E,YE Z,WU Y,et al. The triglyceride-glucose index predicts1-year major adverse cardiovascular events in end-stage renal disease patients with coronary artery disease[J]. Cardiovasc Diabetol,2023,22(1):292. DOI:10.1186/s12933-023-01911-1.

[24]朱若愚,郭晓纲.肥厚型心肌病不良事件的风险预测模型[J].中华心血管病杂志,2022,50(4):322-327. DOI:10.3760/cma.j.cn112148-20220219-00124.

[25]CARLSSON A,IREWALL A L,GRAIPE A,et al. Long-term risk of major adverse cardiovascular events following ischemic stroke or TIA[J]. Sci Rep,2023,13:8333. DOI:10.1038/s41598-023-35421-2.

[26]LIU L,ZENG R,DING L,et al. ABLE-SCORE,a simplified risk score for major adverse cardiovascular outcomes in left ventricular hypertrabeculation:a multicenter longitudinal cohort study[J]. BMC Med,2024,22(1):439. DOI:10.1186/s12916-024-03365-2.

[27]MASES A,BELTRÁN DE HEREDIA S,GALLART L,et al. Prediction of acute myocardial injury in noncardiac surgery in patients at risk for major adverse cardiovascular and cerebrovascular events:a multivariable risk model[J]. Anesth Analg,2023,137(6):1116-1126.DOI:10.1213/ANE.0000000000006320.

[28]杜娟,张娜娜.急性老年晕厥患者临床特征和预后危险因素分析[J].中国药物与临床,2022,22(3):212-215. DOI:10.11655/zgywylc2022.03.004.

[29]罗钢,高丽,丁宏,等. AMI病人PCI术后2年内发生主要心血管不良事件的列线图模型构建及验证[J].蚌埠医学院学报,2024,49(5):597-600. DOI:10.13898/j.cnki.issn.1000-2200.2024.05.009.

[30]YıLMAZ A S,ŞATıROĞLUÖ,ÇETIN M. Fragmented QRS predicted major adverse cardiovascular events in patients with coronary artery disease and percutaneous coronary intervention,10-years of follow-up[J]. Kardiologiia,2022,62(1):72-79. DOI:10.1007/s12306-022-00866-9.

[31]ABDU F A,MAREAI R M,XIANG L,et al. Association of liver fibrosis-4 index with adverse outcomes in hypertrophic cardiomyopathy patients[J]. ESC Heart Fail,2024,11(6):3934-3945. DOI:10.1002/ehf2.14573.

[32]ZELNIKER T A,WIVIOTT S D,MOSENZON O,et al. Association of cardiac biomarkers with major adverse cardiovascular events in high-risk patients with diabetes:a secondary analysis of the DECLARE-TIMI 58 trial[J]. JAMA Cardiol,2023,8(5):503. DOI:10.1001/jamacardio.2023.1192.

[33]WANG M,ZHOU L,SU W,et al. Independent and joint associations between the triglyceride-glucose index and NT-proBNP with the risk of adverse cardiovascular events in patients with diabetes and acute coronary syndrome:a prospective cohort study[J]. Cardiovasc Diabetol,2023,22(1):149. DOI:10.1186/s12933-023-01826-0.

[34]ISMAIL S R,MOHAMMAD M S F,BUTTERWORTH A S,et al. Risk factors of secondary cardiovascular events in a multi-ethnic Asian population with acute myocardial infarction[J]. Int J Cardiol,2023,393:131450. DOI:10.1016/j.ijcard.2023.07.031.

[35]IYER M,SHAH R,ZHENG W,et al. Aetiology and predictors of major bleeding events in patients with heart failure with reduced ejection fraction undergoing percutaneous coronary intervention[J]. Open Heart,2024,11(1):e002572. DOI:10.1136/openhrt-2023-002572.

[36]邱颍,祁万锋.超声心动图定量评估心肌做功参数与非梗阻型肥厚型心肌病左室收缩功能的关系探究[J].临床医学研究与实践,2024,9(18):82-85. DOI:10.19347/j.cnki.2096-1413.202418021.

基本信息:

中图分类号:R542.2

引用信息:

[1]王昱,杨艳芳.非梗阻性肥厚型心肌病主要心血管不良事件的影响因素及Nomogram预测模型的构建与验证[J].临床误诊误治,2026,39(02):25-33+48.

基金信息:

2024年度河北省医学科学研究课题计划项目(20242203)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文